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The integral Laplace transformation and the reduction of differential
equations to Volterra integral equations are used to obtain a solution
to the equation of the packing and gas temperature distribution over
the thickness of the section of a rotary radially sectioned regenera~
tor with a dispersed packing in relation to time for the initial period
of operation of the regenerator.

Rotary heat exchangers with a dispersed . ckinghave
several advantages over the regenerators presently
used in industry. In this paper we present a theore-
tical thermal calculation of a rotary regenerative
radially sectioned heat exchanger with a dispersed
packing. A full description of the exchanger was given
in [1].

As the diagram of the operation of the regenerator
in [1] shows, this heat exchanger operates on the
cross—flow principle. In fact, gas with a constant ini-
tial temperature encounters a packing with varying
temperature, i.e., this process can be illustrated as
shown in Fig. 1.

Heat transfer between the gas (air) and the packing
is unsteady relative to each section of the packing, but
in each cross section of the heat exchanger the temp-
erature at any instant in steady-state operation is the
same as it was at the same instant in the preceding
cycle.

For this heat exchanger we have the following con-
ditions of periodic stationarity:
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In the general case the external and internal prob-
lems must be considered in the investigation of heat

transfer between the packing and the gas. In several
cases, however, the temperature gradient over the

cross section of the packing particles can be neglected.
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Fig. 1. Variation of tempera-
tures of packing and gases in
plane of entry of gases into sec-
tion of packing (x = 0) in radially-
sectioned regenerator.

This is valid at particular values of Bi and Fo. In this
paper we consider the case where the temperature
gradient over the cross section of the particle can be
neglected.

Fig. 2. For the deduction of differential
equations for temperature of packing and
gases {(air).

The total heat flux from the gases to the packing
and from the packing to the air involves convection,
radiation, and conduction. In the case of point contact
of the particles heat transfer between the particles by
conduction can be neglected in certain conditions in
comparison with the heat transfer from the gases to
the packing [2, 3]; this case is also considered in this
paper.

When convective heat transfer is intense, radiation
at temperatures up to 500° C can also be neglected; at
higher temperatures the effect of radiation can be
taken into account by an over-all heat transfer coef-
ficient:

0= 0+ Grad.

We will assume also that the temperature of the
gases over the height of the apparatus is constant (as
the diagram illustrating the operation of the apparatus
indicates), and the filtration of gases through the
layer of packing is uniform with the same velocity at
any cross section x (Fig. 2).

In these conditions we can write the following equa-
tions for the hot side:
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We introduce the dimensionless variables
afF

A= X, 4)
C,L
5= —2F 5)
CMGM
Then from (2) and (3) we obtain
3
o _ g, (6)
or
g
98 _p_gs @)
08
We put
0F = (1 — 8/(F — 9,). 8)

From Egs. (6) and (7) with reference to (8) we ob-
tain the following differential equation for the packing
temperature in any gas period:
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We will formulate the boundary conditions. For an
infinitely narrow strip of heat-transfer surface located
on the side of entry of the gases into each section of
the packing, the gas temperature is constant in time,
i.e., the water equivalent Wy of the gases is infinitely
large. When one of the heat-transfer media has a con-
stant temperature the equation representing the change
in temperature of the second medium (in this case the
packing material) for the first gas period can be ob-
tained by substituting the value Wg = o in the theoreti-
cal heat-transfer equations [4]. Hence,

850, 8) =tf~—<tf—-ﬁ1)exp(_ ‘;/F' ) (10)

M
or, with reference to (5}, condition {10) takes the form

8,0, 8) = tf— Atfexp(—§), (11)

where At;= ff —8,. Hence, for the dimensionless
temperature (8) in the first gas period we have

% (0, 8) = exp(—9). (12)

To determine the initial conditions we consider the
startup period of the apparatus. Before the onset of the
first gas period the cold (air) side of the packing has a
constant temperature ¢, with which it approaches the
hot side (we assume here that the initial packing temp-
erature ¢, is equal to the temperature t; of the ambi-
ent air), i.e., we have the following initial condition
for the first gas period:

ki (9"; 0) = 'ﬂ'l,
or

07 (A, 0) = 1. {13)

We solve Eq. (9) by using the integral Laplace
transformation for the variable A.

The transformation for A is perfectly valid in this
case (the temperature of the gases in the space between

INZHENERNO-FIZICHESKII ZHURNAL

the sections is constant) since the packing temperature
in any section is independent of the finite length of the
packing in the x direction.

In the image region we obtain the following equation
in place of Eq. 9):

d

m [s©%(s, 8) —OF(0, 8)) +

d@f(s, 8 _

0. (14)
s

+ sB8(s, 8) — ©%(0, 8) +
With the boundary conditions (12) Eq. (14) after ap-
propriate transformations for the first gas period
takes the form

—_‘g
d—(;l (Sy 6) — s d(S, (15)
Or1(s, 9) s+ 1
the solution of which is
85(s, 6)=C (9 exp(—s—% a) . (16)

To determine the constant of integration C(s) we use
the initial condition (13). Then, from Eq. (18) with
0 =0, we obtain

C{s)=1/s.

Substituting this value of C(s) in Eq. (16} we obtain
the solution of Eq. (15):

). (17)

—= 1
or , 0) =— —
1s 9) s exp( s+1

To find the original of the function @{g(s, 8) we expand
the right side of Eq. (17) in a series:

s+ 1 s I s+ 1
2 3 2
s B &
20 (s+1P 31 (s 1Y
& $? (——6)" —1
> — = 18
41 (s+ 1 Z B (s D)F (8)

We determine the originals of the first four terms of
series (18) from the tables in [5].

We determine the originals of the remaining terms
of the series by expansion of each of these terms in
series,

®

1 A B
;) (s+1F s+ 1 + (s + 1) t
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cro= T ey W

c
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(s+ 1)
where the coefficients A, B, C, ... M, N are deter-
mined by known methods.
The originals of each term of series (19) are de-
termined from the formula [5]:

l . }hn-l o
G+ a—1)

Xp (—A).
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Fig. 3. Change in dimensionless temperatures of packing (a) and
gases (b), calculated from equations (27) and (29), in relation to
time for different A and & 1) A = 6.15; 2) A = 3.7; 3) A = 2.46;

4) A =1.23.

Then the original @%fs, 6) will be

2
(s, 8) = 1_[6-—2‘—(1_x;+
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+37\.2-—4A——1)~—...} exp{— A). (20)

It is easy to see that Eq. (20} satisfies the boundary
conditions (12) and (13).

To find the packing temperature in subsequent
periods of operation of the regenerator the method of
integral Laplace transformations is most suitable.
However, the original of the image (17), found in the
form of expression (20), is awkward and this makes the
subsequent transformations difficult. The original of
the image (17) can be found from the solution of Eq.
(9) by reducing the differential equation to an integral
equation. As will be shown below, this solution is
simpler. ’

By the substitution

O, 8) =W, 8exp(—i— 8 +exp(—8) (21)
Eq. (9) is brought to the form

*W (&, 6)
drLdd

with boundary conditions obtained from (12) and (13)
with due regard to (21):

W (0, 8) =0, (23)
W, 0)=0. (24)

— W, 8 =exp() 22)

Integrating Eq. (22) with respect to A and 9§, after
some transformations using (23) and (24) we ob-
tain the following Volterra integral equation of the
second kind:

&
Wk, 8)=208lexp(k)—1]+ | | W(Endidn, (25)
00
the solution of which is
k-l

et k2 Y
W, o)=Y —27 [exp(l) =) —:’_] (26)
=1 n=0

Converting to the variable @‘?(?\, 6) from relationship
(21), we finally obtain an expression for the dimension-
less temperature of the packing in the first gas period:

OF (A, 8) =exp(—8) + exp(— A~ 8) X
b1

. hed i An
=1

n=0

Series (27) is absolutely convergent and converges
fairly rapidly.

It is easy to see that Eq. (27) satisfies Eq. (9) and
boundary conditions (12) and (13). We can show that
series (20) can be replaced by series {21). In fact,
from the theorem of uniqueness of the solution of the
mixed problem, series(20) and (27), each of which is
the solution of Eq. (9) with boundary conditions (12)
and (13), are identical. Hence, to find the temperatures
in the subsequent periods we use the relationship

A ep— =3
s ( s+ 1

<34

k= :

5)%exp(——6)+exp(*~k——5} X

k—1
exp(k)—z%]. (28)
n=0 )

To find the packing temperatures in subsequent
periods by the reduction of the differential equation to
an integral one is too awkward and, hence, in sub-
sequent calculations we resort to a combination of the
two methods by means of expression (28).

Substituting (27) in Eq. (7) and referring to (8) we
obtain an expression for the dimensionless tempera-~
ture of the gases in the first gas period:

TE(h, 8) = exp(—A—8) X
k—i

o ot %
e A) — 2
X E [exp(h) 2 pr }, (29)

-~ (k—1)

n=0
where
TF = (15— £ (h, 8)J(1F — 9)). (30)

Series (29) is also absolutely convergent.

Figure 3 shows that with increase in A and 6 = const
the values of @% and T;g decrease. When 6 becomes in-
finitely large functions @%and T1g tend to zero. The cal-
culations from formulas (27) and (29) were performed
on a Minsk-2 electronic digital computer.
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NOTATION

C_ is the specific heat of gases, J/kg-deg; Cyy is
the specific heat of packing material, J/kg-dg; F is
the surface of particles per m thickness of section of
packing, m?/m; F'is the surface of particles, m?;
Gy is the weight of packing per m thickness of section
of packing, kg/m; L is the mass flow rate of gas pass-
ing through one section of packing, kg/h; I is the total
thickness of section of packing, m; t8 is the instan-
taneous temperature of gases passing through section
of packing in gas period, °K; t, is the initial temper-
ature of gas (in gaps between sections of packing), °K;

Wy is the water equivalent of packing material, W/deg;

x is the variable coordinate, m; « is the heat transfer
coefficient, W/m?.deg; #°is the packing temperature
at start of first gas period; #8is the packing temper-
ature at start of any gas period; &f‘ is the packing
temperature at start of any air period; J§ is the
packing temperature at end of any gas period; ngis
the packing temperature at end of any air period; 1 is
the time, hr; Tg is the total duration of gas period, hr;
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48 is the instantaneous packing temperature in gas
period, °K.
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