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The integral Laplace transformation and the reduction of differential 
equations to Volterra integral equations are used to obtain a solution 
to the equation of the packing and gas temperature distribution over 
the thickness of the section of a rotary radially sectioned regenera- 
tor with a dispersed packing in relation to time for the initial period 
of operation of the regenerator. 

Rotary  heat  exchangers  with a d i spe r sed  ~ ekinghave  
seve ra l  advantages  over  the r e g e n e r a t o r s  p r e s e n t l y  
used in  indus t ry .  In this  paper  we p r e sen t  a t h e o r e -  
t ical  t he rma l  ca lcula t ion  of a ro t a ry  r e g e n e r a t i v e  
rad ia l ly  sect ioned heat  exchanger  with a d i spe r sed  
packing. A full desc r ip t ion  of the exchanger  was given 
in [1]. 

As the d i ag ram of the opera t ion  of the r e g e n e r a t o r  
in [1] shows, th is  heat  exchanger  opera tes  on the 
e ro s s - f l ow  pr inc ip le .  In fact, gas with a cons tant  i n i -  
t ial  t e m p e r a t u r e  encoun te r s  a packing with va r y i ng  
t e m p e r a t u r e ,  i . e . ,  th is  p roces s  can be i l l u s t r a t ed  as 
shown in Fig. 1. 

Heat t r a n s f e r  between the gas (air) and the packing 
is uns teady  re la t ive  to each sect ion of the packing,  but 
in each c ro s s  sect ion of the heat exchanger  the t e m p -  
e r a t u r e  at any ins tan t  in s t eady- s t a t e  opera t ion  is the 
same as it was at the same  ins tan t  in  the p reced ing  

cycle. 
For  this  heat  exchanger  we have the fol lowing con-  

di t ions  of per iod ic  s t a t ionar i ty :  

~ (~ = o) = e~(,  = ~), 

~ (~ = -~) = ,~ '  (~ = o) .  (1 )  

In the genera l  case  the ex te rna l  and i n t e rna l  p rob -  
lems  mus t  be cons ide red  in the inves t iga t ion  of heat 
t r a n s f e r  between the packing and the gas.  In s eve ra l  
cases ,  however,  the t e m p e r a t u r e  g rad ien t  over  the 
c ross  sec t ion  of the packing p a r t i c l e s  can be neglected.  

~g 

Jl 

This is valid at particular values of Bi and Fo. In this 

paper we consider the case where the temperature 

gradient over the cross section of the particle can be 
neglected. 

Fig. 2. For the deduction of differential 
equations for temperature of packing and 

gas es (air). 

The total heat flux from the gases to the packing 

and from the packing to the air involves convection, 

radiation, and conduction. In the case of point contact 

of the particles heat transfer between the particles by 
conduction can be neglected in certain conditions in 

comparison with the heat transfer from the gases to 

the packing [2, 3]; this case is also considered in this 

paper. 
When convective heat transfer is intense, radiation 

at temperatures up to 500 ~ C can also be neglected; at 

higher temperatures the effect of radiation can be 

taken into account by an over-all heat transfer coef- 

ficient: 

~ c - ~ - ~ r a d .  

We will  a s s u m e  a lso  that the t e m p e r a t u r e  of the 
gases  over  the height of the appara tus  is constant  (as 
the d i a g r a m i l l u s t r a t i n g  the opera t ion  of the appara tus  
indicates) ,  and the f i l t r a t ion  of gases  through the 
l a ye r  of packing is  un i f o r m  with the same veloci ty  at 

any c r o s s  sec t ion  x (Fig. 2). 
In these  condi t ions  we can wr i te  the following equa-  

t ions  for  the hot s ide:  

Fig. I. Variation of tempera- 

tures of packing and gases in 

plane of entry of gases into sec- 

tion of packing (x = 0) in radially- 

sectioned regenerator. 

a F (~g-- t g) dxd't = CtjLd'~ Otg dx, (2) 
Ox 

a F (t g -  ~g) dxdT ~ C~GMdx O,.._,~g dT. 
�9 aT 
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We int roduce the d imens ion less  va r i ab les  

aF 
= eLL,: x, (4) 

aF 
6 - -  t .  (5) 

C=GM 

Then f r o m  (2) and (3) we obtain 

Ot g 
- -  = e g -  t~, (6) 
0), 

O Og t g -  ~g. (7) 
06 

We put 

o*  = ( t~ - -  ~ 5 / ( d  - o,). (8) 

(6) and (7) wi th  re fe rence  to (8) we ob- F r o m  Eqs. 
tain the following differential  equation for  the packing 
t e m p e r a t u r e  in any gas per iod:  

02 0 ~ O Og 00g 
~ - { -  - -  + - - 0 .  (9) 
o~a5  o~ a5 

we will fo rmula te  the boundary  condit ions.  F o r  an 
infinitely na r row st r ip  of h e a t - t r a n s f e r  sur face  located 
on the side of ent ry  of the gases  into each sect ion of 
the packing, the gas  t e m p e r a t u r e  is constant  in t ime,  
i. e . ,  the water  equivalent Wg of the gases  is infinitely 
large .  When one of the h e a t - t r a n s f e r  media  has a con-  
stant t e m p e r a t u r e  the equation r ep re sen t i ng  the change 
in t e m p e r a t u r e  of the second medium (in this ease the 
packing mate r ia l )  fo r  the f i r s t  gas  per iod  can be ob-  
tained by subst i tut ing the value Wg = oo in the theo re t i -  
cal  h e a t - t r a n s f e r  equations [4]. Hence, 

0~(0, 6) = t~-- (t~-- 0~) exp ( - -  ~ )  (10) 

or, with r e f e r ence  to (5), condit ion (10) t akes  the f o r m  

~ (0, 6) = t~-- A tl%xp (--  6), (11) 

where  A t [ =  t~-- G- Hence, f o r  the d imens ion less  
t empe ra tu r e  (8) in the f i r s t  gas  per iod  we have 

Otg(O, 6 ) =  exp(--5). (12) 

To de te rmine  the initial conditions we cons ider  the 
s tar tup per iod  of the appara tus .  Before  the onset  of the 
f i r s t  gas per iod the cold (air) side of the packing has  a 
constant  t e m p e r a t u r e  a t  with which it approaches  the 
hot side (we a s s u m e  he re  tha t  the init ial  packing t e m p -  
e r a tu r e  ~i is equal to the t e m p e r a t u r e  t i of the ambi -  
ent air),  i . e . ,  we have the following initial condition 
for  the f i r s t  gas  per iod:  

# (~, O) = ~ ,  

o r  

e[ (z, 0) = 1. ( la)  

We solve Eq. (9) by us ing the integral  Laplace 
t r a n s f o r m a t i o n  for  the var iab le  X. 

The t r a n s f o r m a t i o n  fo r  X is pe r f ec t ly  val id in this 
case  (the t e m p e r a t u r e  of the gases  in the space between 

the sect ions  is constant)  since the packing t e m p e r a t u r e  
in any sect ion is  independent of the finite length of the 
packing in the x direct ion.  

In the image region we obtain the following equation 
in place of Eq. (9): 

d ls-g~(s, 6 ) - - e l (0 ,  6)1 + 
d5 

dOll(s, 6) _-- 0. (14) 
+ s g [ ( s ,  6)-el(o,  6)+ d 6  

With the boundary conditions (12) Eq. (14) a f te r  ap-  
p ropr ia te  t r an s fo rma t ions  for  the f i r s t  gas per iod 
takes  the f o r m  

d6~(~, 6)  s 
-- dr ,  (15) 

6f(s, 6) s + 1 

the solution of which is 

og(s, 6 ) : C ( s ) e x p ( - - s + i S  8 ) .  (16) 

To de te rmine  the constant  of in tegra t ion  C(s) we use 
the initial condition (13). Then, f r o m  Eq. (16) with 
5 = 0, we obtain 

C(s)=l/s. 

Substituting this  value of C(s) in Eq. (16) we obtain 
the solution of Eq. (15): 

-O~(s, 6 ) =  1--7- e x p ( - -  s+lS 6). (17) 

To find the or iginal  of the function 6)g(s, 6) we expand 
the r ight  side of Eq. (17) in a ser ies :  

l e x p / - -  s ~ / ) 1 6 1 
s s + l  6 s 1! s + l  + 

6 2 s 6 a s 2 
+ + 

2[ (S q- I) 3 3l (S q- 1) 3 

6 * s a ~ ,  ( - -  6?  s a-1 
+ 4! (s + 1) a "'" ~.~ k! (s + 1) k (18) 

k=0 

We de te rmine  the or ig inals  of the f i r s t  four  t e r m s  of 
s e r i e s  (18) f r o m  the tables  in [5]. 

We de te rmine  the or iginals  of the remaining  t e r m s  
of the se r i e s  by expansion of each  of these  t e r m s  in 
ser ies ,  

s k-I A B + + 
k=0 (s 4- I) ~ s + 1 (s + 1) - - - - ~  

C M N 
+ ~  q- . . .q  + , (19) 

(s + 1) 3 (s + l) ~-1 (s + 1) ~ 

where  the coeff ie ients  A, B, C . . . .  3/[, N are  de t e r -  
mined by known methods.  

The or ig ina ls  of each t e r m  of se r i e s  (19) are  de-  
t e rmined  f r o m  the fo rmula  [5]: 

| ~n--  1 

(s + 1y ( n -  1)! 
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Fig.  3. Change in d imens ionless  t e m p e r a t u r e s  of packing (a) and 
gases  (b), calculated f rom equations (27) and (29), in re la t ion to 
t ime for  d i f ferent  k a n d d :  1) X= 6.15; 2) X = 3 . 7 ;  3) X = 2 . 4 6 ;  

4) k = 1.23. 

Then the original  eg(s ,  5) will be 

(~(s, (5)= 1 - -  5 - - ~ ( l - - k , ) @  

~- - -  1--2X + - -  - -  - -  

--U., + 2 

) 1 
+ o :  4! 3 

+ 3 U - -  4~.-- 1)-- . . .  ] exp(-- ~,). (20) 

It is  easy  to see that Eq. (20) sa t i s f ies  the boundary  
conditions (12) and (13). 

To find the packing t e m p e r a t u r e  in subsequent  
per iods  of opera t ion  of the r e g e n e r a t o r  the method of 
integral  Laplace  t r a n s fo rm a t i ons  is mos t  suitable.  
However, the or ig inal  of the image  (17), found in the 
fo rm of expres s ion  (20), is awkward and this makes  the 
subsequent t r an s fo rm a t i ons  difficult.  The or iginal  of 
the image (17) can be found f rom the solution of Eq. 
(9) by reducing the different ial  equation to an integral  
equation. As will be shown below, this  solution is 
s impler .  

By the substi tution 

O~()~, 6 ) = W ( ; L  6) exp (-- k -- 5 ) +  exp(--5) (21) 

Eq. (9) is brought  to the f o r m  

0"2W(~., 5) W0., 5) = exp(~,) (22) 
Ok. 06 

with boundary  conditions obtained f r o m  (12)and (13) 
with due r ega rd  to (21): 

W (0, 5) = 0, (23) 

W ()~, 0) = 0. (24) 

Integrat ing Eq. (22) with respec t  to X and 5, af ter  
some t r a n s f o r m a t i o n s  using (23) and (24) we ob- 
tain the following Vol ter ra  integral  equation of the 
second kind: 

5 X 

W0~, 6) = 5 [exp 0.) --  l] -- I' I 'W(~ 'B)d~dq'  (25) 
6 6 

the solution of which is 

(26) 
, -  - -  

k ~  1 n ~ 0  

Converting to the variable ~g(x, 6) from relationship 
(21), we finally obtain an expression for the dimension- 
less temperature of the packing in the first gas period: 

O~gQ,, 5) = exp (-- 6) + exp (--)~--  5) X 

X exp(~.) - -  ~ - -  . (27) 
k=l ~=o n! J 

Series  (27) is absolute ly  convergent  and converges  
fa i r ly  rapidly.  

It is easy to see that Eq. (27) satisfies Eq. (9) and 
boundary conditions (12) and (13). We can show that 
series (20) can be replaced by series (21). In fact, 
from the theorem of uniqueness of the solution of the 
mixed problem, series (20) and (27), each of which is 

the solution of Eq. (9) with boundary conditions (12) 
and (13), are identical. Hence, to find the temperatures 
in the subsequent periods we use the relationship 

( s 5 ) @ e x p ( - - 5 ) - [ - e x p ( - - L - - 6 ) •  -J-1 eXPs - - s +  1 

X k=l ~ exp(~,) ~ n! J (28) 

To find the packing t e m p e r a t u r e s  in subsequent 
pe r iods  by the reduct ion of the different ial  equation to 
an integral  one is too awkward and, hence, in sub- 
sequent  ca lcula t ions  we r e s o r t  to a combinat ion of the 
two methods by means  of express ion  (28). 

Substituting (27) in Eq. (7) and r e f e r r i n g  to (8) we 
obtain an expres s ion  for  the d imens ion less  t e m p e r a -  
tu re  of the gases  in the f i r s t  gas  per iod:  

T~ (k., 8) = exp (--  k. - -  5) X 

5k_1 
exp (s - -  , (29) 

• (k - -  1)! 

where 

= { d -  t - 81). (3O) 

Series (29) is also absolutely convergent. 
Figure 3 shows that with increase in X and 6 = const 

the values of C~ andT g decrease. When 5 b.ecomes in- 

finitely large functions cgand Tlgtend to zero. The cal- 

culations from formulas (27) and (29) were performed 

on a Minsk-2 electronic digital computer. 
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NOTATION 

C is the specific heat of gases, J /kg-  deg; C M is 
P 

the specific heat of packing material,  J /kg .  dg; F is 
the surface of part icles per  m thickness of section of 
packing, m2/m; F '  is the surface of part icles,  m2; 
G M is the weight of packing per m thickness of section 
of packing, kg/m; L is the mass flow rate of gas pass-  
ing through one section of packing, kg/h; l is the total 
thickness of section of packing, m; tg is the instan- 
taneous temperature  of gases passing through section 
of packing in gas period, ~ t i is the initial temper-  
ature of gas (in gaps between sections of packing), ~ 
W M is the water equivalent of packing material,  W/deg; 
x is the variable coordinate, m; ~ is the heat t ransfer  
coefficient, W/m 2. deg; ~o is the packing temperature  
at start  of f irst  gas period; ~gis  the packing temper-  

1 a 
ature at s tar t  of any gas period; ~t  is the packing 
temperature at start  of any air  period; ~ is the 
packing temperature  at end of any gas period; ~ i s  
the packing temperature  at end of any air  period; T is 
the time, hr; ~g is the total duration of gas period, hr; 

sg is the instantaneous packing temperature in gas 
period, ~ 
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